Hypoxia causes leukocyte adherence to mesenteric venules in nonacclimatized, but not in acclimatized, rats.

نویسندگان

  • J G Wood
  • L F Mattioli
  • N C Gonzalez
چکیده

Although the effects of ischemia-reperfusion have received considerable attention, few studies have directly evaluated the microcirculatory response to systemic hypoxia. The overall objective of this study was to assess the effect of environmental hypoxia on adhesive interactions of circulating leukocytes with rat mesenteric venules by using intravital microscopy. Experiments were designed to 1) characterize the adhesive interactions of circulating leukocytes to venules during acute hypoxia produced by a reduction in inspired PO(2), 2) evaluate the role of nitric oxide in these adhesive interactions, 3) determine whether the effect of hypoxia on leukocyte adhesive interactions differs between acclimatized and nonacclimatized rats, and 4) assess whether compensatory changes in nitric oxide formation contribute to this difference. The results showed that acute hypoxia promotes leukocyte-endothelial adherence in mesenteric venules of nonacclimatized rats. The mechanism of this response is consistent with depletion of nitric oxide within the microcirculation. In contrast, no leukocyte-endothelial adherence occurred during hypoxia in rats acclimatized to hypobaric hypoxia. The results are consistent with increased nitric oxide formation due to expression of inducible nitric oxide synthase during the acclimatization period. Further studies are needed to establish the cause of nitric oxide depletion during acute hypoxia as well as to define the compensatory responses that attenuate hypoxia-induced leukocyte-endothelial adherence in the microvasculature of acclimatized rats.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of exercise training on acclimatization to hypoxia: systemic O2 transport during maximal exercise.

Acclimatization to hypoxia has minimal effect on maximal O2 uptake (Vo2 max). Prolonged hypoxia shows reductions in cardiac output (Q), maximal heart rate (HR-max), myocardial beta-adrenoceptor (beta-AR) density, and chronotropic response to isoproterenol. This study tested the hypothesis that exercise training (ET), which attenuates beta-AR downregulation, would increase HRmax and Q of acclima...

متن کامل

Mesenteric microvascular inflammatory responses to systemic hypoxia are mediated by PAF and LTB4.

Systemic hypoxia produces a rapid microvascular inflammatory response characterized by increased reactive oxygen species (ROS) levels, leukocyte-endothelial adherence and emigration, and increased vascular permeability. The lipid inflammatory mediator leukotriene B(4) (LTB(4)) is involved in the early hypoxia-induced responses (ROS generation and leukocyte adherence). Whether other lipid inflam...

متن کامل

Systemic hypoxia promotes leukocyte-endothelial adherence via reactive oxidant generation.

We recently demonstrated that systemic hypoxia during reduced inspired PO(2) produces a rapid increase in leukocyte adherence to rat mesenteric venules. Evidence suggests that the mechanism of this response involves decreased nitric oxide (NO) levels. One possible pathway for NO depletion could involve increased reactive oxygen species (ROS) generation resulting in inactivation of NO. The overa...

متن کامل

Age-dependent responses of the mesenteric vasculature to ischemia-reperfusion.

The age-dependent responses of the mesenteric vasculature to ischemia-reperfusion (I/R) were compared in 2-mo-old and 2-yr-old rats. Measurements were made of leukocyte adherence, albumin leakage, and oxidative stress in postcapillary venules. In young rats I/R induced an increase in leukocyte adherence and albumin leakage, but in aged rats I/R induced an increase in albumin leakage without an ...

متن کامل

Interaction between reactive oxygen species and nitric oxide in the microvascular response to systemic hypoxia.

Systemic hypoxia results in oxidative stress due to a change in the reactive oxygen species (ROS)-nitric oxide (NO) balance. These experiments explored two mechanisms for the altered ROS-NO balance: 1) decreased NO synthesis by NO synthase due to limited O(2) substrate availability and 2) increased superoxide generation. ROS levels and leukocyte adherence in mesenteric venules of rats during hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 87 3  شماره 

صفحات  -

تاریخ انتشار 1999